Identification of Pedigree Relationship from Genome Sharing
نویسندگان
چکیده
Determination of degree of relationship traditionally has been undertaken using genotypic data on individual loci, typically assumed to be independent. With dense marker data as now available, it is possible to identify the regions of the genome shared identical by descent (ibd). This information can be used to determine pedigree relationship (R), e.g., cousins vs. second cousins, and also to distinguish pedigrees that have the same Wright's relationship (R) such as half-sibs and uncle-nephew. We use simulation to investigate the accuracy with which pedigree relationship can be inferred from genome sharing for uniparental relatives (a common ancestor on only one side of their pedigree), specifically the number, position (whether at chromosome ends), and length of shared regions ibd on each chromosome. Moments of the distribution of the likelihood ratio (including its expectation, the Kullback-Leibler distance) for alternative relationships are estimated for model human genomes, with the ratio of the mean to the SD of the likelihood ratio providing a useful reference point. Two relationships differing in R can be readily distinguished provided at least one has high R, e.g., approximately 98.5% correct assignment of cousins and half-cousins, but only approximately 75% for second cousins once removed and third cousins. Two relationships with the same R can be distinguished only if R is high, e.g., half-sibs and uncle-nephew, with probability of correct assignment being approximately 5/6.
منابع مشابه
تحلیل چندسطحی تأثیر ویژگیهای شغل بر اشتراک دانش با نقش میانجی هویت سازمانی
Today, the issue of knowledge acquisition and sharing it in the work field, especially in knowledge-based organizations has become more important. A library is a knowledge-oriented organization and the librarians are knowledge workers in the library. So, how to encourage librarians to share their knowledge and self-learning is very important. On the one hand, surveys show that designing work ha...
متن کاملIdentity by descent estimation with dense genome-wide genotype data.
We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage dise...
متن کاملRun of Homozygosity a Procedure to Detecting Inbreeding in Farm Animals
Inbreeding depression is a harmful phenomenon in livestock which is outcome of inbreeding. Inbreeding is consequence mating between two individuals who are more related to each other than average relatedness in population, which results in reducing in fitness of progenies and genetic variability in populations. Development of high-density genome-wide single nucleotide polymorphism (SNP) array f...
متن کاملNew method to combine molecular and pedigree relationships.
Relationship coefficients are traditionally based on pedigree data. Today, with the development of molecular techniques, they are often completely replaced by coefficients calculated from molecular data. Examples are relationships from microsatellites for biodiversity studies but also genomic relationships from SNP as currently used in genomic prediction of breeding values. There are, however, ...
متن کاملIdentification of linked regions using high-density SNP genotype data in linkage analysis
MOTIVATION With the knowledge of large number of SNPs in human genome and the fast development in high-throughput genotyping technologies, identification of linked regions in linkage analysis through allele sharing status determination will play an ever important role, while consideration of recombination fractions becomes unnecessary. RESULTS In this study, we have developed a rule-based pro...
متن کامل